A Facile Strategy to Prepare an Enzyme-Responsive Mussel Mimetic Coating for Drug Delivery Based on Mesoporous Silica Nanoparticles

Surface functional mesoporous silica nanoparticles (MSNs) have been widely used as promosing materials for drug delivery. Herein, we reported a facile strategy to construct MSNs coated by enzyme-resposive polylysine-dopamine (PLDA) films through self-polymerization of dopamine derivative lysine-dopa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 22 vom: 06. Juni, Seite 5511-5518
1. Verfasser: Hu, Chunlin (VerfasserIn)
Weitere Verfasser: Huang, Ping, Zheng, Zhen, Yang, Zhibiao, Wang, Xinling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Silicon Dioxide 7631-86-9 Doxorubicin 80168379AG
Beschreibung
Zusammenfassung:Surface functional mesoporous silica nanoparticles (MSNs) have been widely used as promosing materials for drug delivery. Herein, we reported a facile strategy to construct MSNs coated by enzyme-resposive polylysine-dopamine (PLDA) films through self-polymerization of dopamine derivative lysine-dopamine, in which the drug could be loaded and delivered efficiently. In detail, RhB or DOX was used as a drug model and loaded in functional MSNs via a one-pot procedure among MSNs, drug, and lysine-dopamine (LDA) under basic conditions. Owing to the fact that the peptide bonds between lysine and dopamine can be cleaved under triggering by pepsin, the resulting RhB/DOXPLDA-MSNs exibit enzyme-responsive characterization. After the DOX@PLDA-MSNs enter into the cancer cells, the drug can be released effectively through degradation of peptide bonds under the influence of enzyme in cancer cells, which shows marked anticancer activity in vitro. This facile strategy may provide a new platform to construct enzyme-responsive controlled drug delivery systems
Beschreibung:Date Completed 23.01.2019
Date Revised 23.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01316