Feasible and Robust Optimization Framework for Auxiliary Information Refinement in Spatially-Varying Image Enhancement

In content-based image processing, the precise inference of auxiliary information dominates various image enhancement applications. Given the rough auxiliary information provided by users or inference algorithms, a common scenario is to refine it with respect to the image content. Quadratic Laplacia...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 8 vom: 01. Aug., Seite 3721-3733
Auteur principal: Tsai, Chia-Liang (Auteur)
Autres auteurs: Chien, Shao-Yi
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM271489286
003 DE-627
005 20250221141906.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2698922  |2 doi 
028 5 2 |a pubmed25n0904.xml 
035 |a (DE-627)NLM271489286 
035 |a (NLM)28463195 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tsai, Chia-Liang  |e verfasserin  |4 aut 
245 1 0 |a Feasible and Robust Optimization Framework for Auxiliary Information Refinement in Spatially-Varying Image Enhancement 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In content-based image processing, the precise inference of auxiliary information dominates various image enhancement applications. Given the rough auxiliary information provided by users or inference algorithms, a common scenario is to refine it with respect to the image content. Quadratic Laplacian regularization is generally used as the refinement framework because of the availability of closed-form solutions. However, solving the resultant large linear system imposes a great burden on commodity computing hardware systems in the form of computational time and memory consumption, so efficient computing algorithms without losing precision are required, especially for large images. In this paper, we first analyze the geometric nature of the quadratic Laplacian regularization associated with the algebraic property of the corresponding linear system, which clarifies the essential issues causing ineffective solutions for conventional optimization algorithms. Correspondingly, we propose an optimization scheme that is capable of approaching the closed-form solution in an efficient manner using existing fast local filters, and we perform a spectral analysis to validate the robustness of this method in severe conditions. Finally, experimental results show that the proposed scheme is more feasible for large input images and is more robust to obtain the effective refinement than conventional algorithms 
650 4 |a Journal Article 
700 1 |a Chien, Shao-Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 8 vom: 01. Aug., Seite 3721-3733  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:8  |g day:01  |g month:08  |g pages:3721-3733 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2698922  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 8  |b 01  |c 08  |h 3721-3733