Collaborative Active Visual Recognition from Crowds : A Distributed Ensemble Approach

Active learning is an effective way of engaging users to interactively train models for visual recognition more efficiently. The vast majority of previous works focused on active learning with a single human oracle. The problem of active learning with multiple oracles in a collaborative setting has...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 3 vom: 01. März, Seite 582-594
1. Verfasser: Hua, Gang (VerfasserIn)
Weitere Verfasser: Long, Chengjiang, Yang, Ming, Gao, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM27010318X
003 DE-627
005 20250221093335.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2682082  |2 doi 
028 5 2 |a pubmed25n0900.xml 
035 |a (DE-627)NLM27010318X 
035 |a (NLM)28320651 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hua, Gang  |e verfasserin  |4 aut 
245 1 0 |a Collaborative Active Visual Recognition from Crowds  |b A Distributed Ensemble Approach 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.06.2019 
500 |a Date Revised 05.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Active learning is an effective way of engaging users to interactively train models for visual recognition more efficiently. The vast majority of previous works focused on active learning with a single human oracle. The problem of active learning with multiple oracles in a collaborative setting has not been well explored. We present a collaborative computational model for active learning with multiple human oracles, the input from whom may possess different levels of noises. It leads to not only an ensemble kernel machine that is robust to label noises, but also a principled label quality measure to online detect irresponsible labelers. Instead of running independent active learning processes for each individual human oracle, our model captures the inherent correlations among the labelers through shared data among them. Our experiments with both simulated and real crowd-sourced noisy labels demonstrate the efficacy of our model 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Long, Chengjiang  |e verfasserin  |4 aut 
700 1 |a Yang, Ming  |e verfasserin  |4 aut 
700 1 |a Gao, Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 3 vom: 01. März, Seite 582-594  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:40  |g year:2018  |g number:3  |g day:01  |g month:03  |g pages:582-594 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2682082  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 3  |b 01  |c 03  |h 582-594