Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland

© 2017 John Wiley & Sons Ltd.

Détails bibliographiques
Publié dans:Global change biology. - 1999. - 23(2017), 8 vom: 06. Aug., Seite 3139-3153
Auteur principal: Zhao, Junbin (Auteur)
Autres auteurs: Peichl, Matthias, Nilsson, Mats B
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Global change biology
Sujets:Journal Article biomass carbon dioxide flux climate change gross primary production mire respiration snow cover soil frost Soil plus... Carbon Dioxide 142M471B3J
LEADER 01000caa a22002652 4500
001 NLM267886381
003 DE-627
005 20250221032749.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13621  |2 doi 
028 5 2 |a pubmed25n0892.xml 
035 |a (DE-627)NLM267886381 
035 |a (NLM)28075520 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Junbin  |e verfasserin  |4 aut 
245 1 0 |a Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 John Wiley & Sons Ltd. 
520 |a At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m-2  s-1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m-2  s-1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO2 fluxes, suggesting that winter climate change could considerably alter the growing season CO2 exchange in boreal peatlands through its effect on vegetation development 
650 4 |a Journal Article 
650 4 |a biomass 
650 4 |a carbon dioxide flux 
650 4 |a climate change 
650 4 |a gross primary production 
650 4 |a mire 
650 4 |a respiration 
650 4 |a snow cover 
650 4 |a soil frost 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Peichl, Matthias  |e verfasserin  |4 aut 
700 1 |a Nilsson, Mats B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 8 vom: 06. Aug., Seite 3139-3153  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:8  |g day:06  |g month:08  |g pages:3139-3153 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13621  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 8  |b 06  |c 08  |h 3139-3153