|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM266974244 |
003 |
DE-627 |
005 |
20250221001952.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0889.xml
|
035 |
|
|
|a (DE-627)NLM266974244
|
035 |
|
|
|a (NLM)27935304
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Alison, Lauriane
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Pickering and Network Stabilization of Biocompatible Emulsions Using Chitosan-Modified Silica Nanoparticles
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.09.2018
|
500 |
|
|
|a Date Revised 04.10.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Edible solid particles constitute an attractive alternative to surfactants as stabilizers of food-grade emulsions for products requiring a long-term shelf life. Here, we report on a new approach to stabilize edible emulsions using silica nanoparticles modified by noncovalently bound chitosan oligomers. Electrostatic modification with chitosan increases the hydrophobicity of the silica nanoparticles and favors their adsorption at the oil-water interface. The interfacial adsorption of the chitosan-modified silica particles enables the preparation of oil-in-water emulsions with small droplet sizes of a few micrometers through high-pressure homogenization. This approach enables the stabilization of food-grade emulsions for more than 3 months. The emulsion structure and stability can be effectively tuned by controlling the extent of chitosan adsorption on the silica particles. Bulk and interfacial rheology are used to highlight the two stabilization mechanisms involved. Low chitosan concentration (1 wt % with respect to silica) leads to the formation of a viscoelastic film of particles adsorbed at the oil-water interface, enabling Pickering stabilization of the emulsion. By contrast, a network of agglomerated particles formed around the droplets is the predominant stabilization mechanism of the emulsions at higher chitosan content (5 wt % with respect to silica). These two pathways against droplet coalescence and coarsening open up different possibilities to engineer the long-term stabilization of emulsions for food applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Emulsions
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
650 |
|
7 |
|a Chitosan
|2 NLM
|
650 |
|
7 |
|a 9012-76-4
|2 NLM
|
700 |
1 |
|
|a Rühs, Patrick A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tervoort, Elena
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Teleki, Alexandra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zanini, Michele
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Isa, Lucio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Studart, André R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 32(2016), 50 vom: 20. Dez., Seite 13446-13457
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2016
|g number:50
|g day:20
|g month:12
|g pages:13446-13457
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2016
|e 50
|b 20
|c 12
|h 13446-13457
|