Probabilistic Graph Layout for Uncertain Network Visualization

We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 23(2017), 1 vom: 02. Jan., Seite 531-540
1. Verfasser: Schulz, Christoph (VerfasserIn)
Weitere Verfasser: Nocaj, Arlind, Goertler, Jochen, Deussen, Oliver, Brandes, Ulrik, Weiskopf, Daniel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM266449190
003 DE-627
005 20250220223005.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0888.xml 
035 |a (DE-627)NLM266449190 
035 |a (NLM)27875169 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schulz, Christoph  |e verfasserin  |4 aut 
245 1 0 |a Probabilistic Graph Layout for Uncertain Network Visualization 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nocaj, Arlind  |e verfasserin  |4 aut 
700 1 |a Goertler, Jochen  |e verfasserin  |4 aut 
700 1 |a Deussen, Oliver  |e verfasserin  |4 aut 
700 1 |a Brandes, Ulrik  |e verfasserin  |4 aut 
700 1 |a Weiskopf, Daniel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 23(2017), 1 vom: 02. Jan., Seite 531-540  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:02  |g month:01  |g pages:531-540 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 02  |c 01  |h 531-540