Photocatalytic Deposition of Hydroxyapatite onto a Titanium Dioxide Nanotubular Layer with Fine Tuning of Layer Nanoarchitecture

A new effective method of photocatalytic deposition of hydroxyapatite (HA) onto semiconductor substrates is proposed. A highly ordered nanotubular TiO2 (TNT) layer formed on titanium via its anodization is chosen as the photoactive substrate. The method is based on photodecomposition of the phosphat...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 32(2016), 16 vom: 26. Apr., Seite 4016-21
Auteur principal: Ulasevich, Sviatlana A (Auteur)
Autres auteurs: Poznyak, Sergey K, Kulak, Anatoly I, Lisenkov, Aleksey D, Starykevich, Maksim, Skorb, Ekaterina V
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:A new effective method of photocatalytic deposition of hydroxyapatite (HA) onto semiconductor substrates is proposed. A highly ordered nanotubular TiO2 (TNT) layer formed on titanium via its anodization is chosen as the photoactive substrate. The method is based on photodecomposition of the phosphate anion precursor, triethylphosphate (TEP), on the semiconductor surface with the following reaction of formed phosphate anions with calcium cations presented in the solution. HA can be deposited only on irradiated areas, providing the possibility of photoresist-free HA patterning. It is shown that HA deposition can be controlled via pH, light intensity, and duration of the process. Energy-dispersive X-ray spectroscopy profile analysis and glow discharge optical emission spectroscopy of HA-modified TNT prove that HA deposits over the entire TNT depth. High biocompatibility of the surfaces is proven by protein adsorption and pre-osteoblast cell growth
Description:Date Completed 18.05.2018
Date Revised 18.05.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b00297