Growth of Arabidopsis thaliana and Eutrema salsugineum in a closed growing system designed for quantification of plant water use

Copyright © 2016 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 193(2016) vom: 01. Apr., Seite 110-8
1. Verfasser: Sandoval, Jhon F (VerfasserIn)
Weitere Verfasser: Yoo, Chan Yul, Gosney, Michael J, Mickelbart, Michael V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Growing media Light response Methodology Plant growth Transpiration Water-use efficiency Water 059QF0KO0R
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier GmbH. All rights reserved.
The identification of genetic determinants for water-use efficiency (WUE) and their incorporation into crop plants is critical as world water resources are predicted to become less stable over the coming decades. However, quantification of WUE in small model species such as Arabidopsis is difficult because of low plant water loss relative to root zone evaporation. Furthermore, measurements of long-term WUE are labor-intensive and time-consuming. A novel high-throughput closed-container growing system for measuring plant WUE is described. The system eliminates nearly all water loss from the media and does not require irrigation throughout the duration of a typical experiment. Using the model species Arabidopsis thaliana and Eutrema salsugineum, it was confirmed that under growth chamber conditions, this system: (1) eliminates the need for irrigation for as much as 30 days with media water content remaining above 80% full capacity; (2) allows for quantification of WUE in plants with a leaf area as small as ca. 20 cm(2); (3) does not inhibit plant growth; and (4) does not alter media conditions outside of an acceptable range for these species. The growing system provides an efficient high-throughput system for quantifying plant water loss and WUE
Beschreibung:Date Completed 17.01.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2016.02.010