LEADER 01000caa a22002652c 4500
001 NLM257334890
003 DE-627
005 20250219170128.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X15625373  |2 doi 
028 5 2 |a pubmed25n0857.xml 
035 |a (DE-627)NLM257334890 
035 |a (NLM)26862148 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vermisoglou, Eleni C  |e verfasserin  |4 aut 
245 1 0 |a Recycling of typical supercapacitor materials 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2016 
500 |a Date Revised 30.12.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2016. 
520 |a A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Recycling 
650 4 |a acetonitrile 
650 4 |a activated charcoal 
650 4 |a aluminium 
650 4 |a paper 
650 4 |a separation 
650 4 |a supercapacitor 
650 4 |a tetraethyl ammonium tetrafluoroborate 
650 7 |a Acetates  |2 NLM 
650 7 |a Acetonitriles  |2 NLM 
650 7 |a Borates  |2 NLM 
650 7 |a Calcium Compounds  |2 NLM 
650 7 |a Nanotubes, Carbon  |2 NLM 
650 7 |a Quaternary Ammonium Compounds  |2 NLM 
650 7 |a Solid Waste  |2 NLM 
650 7 |a Solvents  |2 NLM 
650 7 |a Charcoal  |2 NLM 
650 7 |a 16291-96-6  |2 NLM 
650 7 |a Aluminum  |2 NLM 
650 7 |a CPD4NFA903  |2 NLM 
650 7 |a calcium acetate  |2 NLM 
650 7 |a Y882YXF34X  |2 NLM 
650 7 |a acetonitrile  |2 NLM 
650 7 |a Z072SB282N  |2 NLM 
700 1 |a Giannouri, Maria  |e verfasserin  |4 aut 
700 1 |a Todorova, Nadia  |e verfasserin  |4 aut 
700 1 |a Giannakopoulou, Tatiana  |e verfasserin  |4 aut 
700 1 |a Lekakou, Constantina  |e verfasserin  |4 aut 
700 1 |a Trapalis, Christos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 34(2016), 4 vom: 01. Apr., Seite 337-44  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnas 
773 1 8 |g volume:34  |g year:2016  |g number:4  |g day:01  |g month:04  |g pages:337-44 
856 4 0 |u http://dx.doi.org/10.1177/0734242X15625373  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2016  |e 4  |b 01  |c 04  |h 337-44