Hybrid Vesicles with Alterable Fully Covered Armors of Nanoparticles : Fabrication, Catalysis, and Surface-Enhanced Raman Scattering

This work reports on the facile preparation of hybrid polymer vesicles with alterable armors of metal nanoparticles by using a novel hyperbranched polymer vesicle as the templates. The vesicles were prepared through the aqueous self-assembly of a hyperbranched multiarm copolymers with many tertiary...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 32(2016), 4 vom: 02. Feb., Seite 991-6
Auteur principal: Huang, Tong (Auteur)
Autres auteurs: Li, Huimei, Huang, Lei, Li, Shanlong, Li, Ke, Zhou, Yongfeng
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:This work reports on the facile preparation of hybrid polymer vesicles with alterable armors of metal nanoparticles by using a novel hyperbranched polymer vesicle as the templates. The vesicles were prepared through the aqueous self-assembly of a hyperbranched multiarm copolymers with many tertiary amino groups on the surface, which can electrostatically complexed or coordinated with metal ions like AuCl4(-), PtCl6(2-), and Ag(+) ions. Subsequently, the vesicles coated with metal ions can be in situ reduced into metal nanoparticles, through which a series of surface-engineered vesicles (Auvesicles, Ag@vesicles, Pt@vesicles) with an advantage of fully covered metal nanoparticles on the surface could be readily prepared. The morphologies, structures, and formation mechanism of the as-prepared hybrid vesicles were carefully characterized, and the obtained hybrid vesicles also showed great potentials in catalysis and surface-enhanced Raman scattering (SERS) applications
Description:Date Completed 31.05.2016
Date Revised 02.02.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b04478