Structural Correspondence of the Oriented Attachment Growth Mechanism of Crystals of the Pharmaceutical Dirithromycin
The oriented attachment (OA) mechanism is promising for designing novel nanomaterials, yet an intensive understanding of the relationship between the crystal structure and attachment orientation is still lacking. In this work, we report layered hexagonal crystals of the pharmaceutical dirithromycin...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 31(2015), 51 vom: 29. Dez., Seite 13802-12 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2015
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents dirithromycin 1801D76STL Erythromycin 63937KV33D |
Résumé: | The oriented attachment (OA) mechanism is promising for designing novel nanomaterials, yet an intensive understanding of the relationship between the crystal structure and attachment orientation is still lacking. In this work, we report layered hexagonal crystals of the pharmaceutical dirithromycin (DIR) containing multiple layers fabricated via a solvothermal method for a certain period of time at 40 °C. These elongated hexagonal crystals experience an OA that is preferentially on the face (001) of the initial crystals to assemble the final crystals into layered stacks. Through agreement with molecular modeling calculations, we predicted the final crystal growth morphology and confirmed the favored attachment surface based on the energy change ΔE following an OA event. These simulation results at the molecular level yielded good agreement with the crystal growth experiments. This study demonstrates the critical importance of combining experiments with a computational approach to understand the intrinsic molecular details of the OA growth mechanism of other compounds and to design nanomaterials with a desirable morphology and physical and chemical properties |
---|---|
Description: | Date Completed 12.10.2016 Date Revised 30.12.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b02901 |