Nanoring Arrays on Fe Coated Substrate : Formation and Guidance for the Growth of Hierarchical CNTs

In this article, we report the formation of nanoring structures on Fe coated substrate and their application in guiding the growth of carbon nanotube (CNT) patterns with hierarchical structures. The formation of nanorings involves the etching of polystyrene (PS) monolayer colloidal crystals (MCCs) u...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 31(2015), 49 vom: 15. Dez., Seite 13327-33
Auteur principal: Luo, Tianchan (Auteur)
Autres auteurs: Du, Can, Zhang, Aijuan, Wang, Laisen, Bai, Hua, Li, Lei
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:In this article, we report the formation of nanoring structures on Fe coated substrate and their application in guiding the growth of carbon nanotube (CNT) patterns with hierarchical structures. The formation of nanorings involves the etching of polystyrene (PS) monolayer colloidal crystals (MCCs) under reactive ion etching (RIE), and the redeposition and cross-linkage of the active degradation products at the contact line between the MCCs and the substrate. After washing out the MCCs, insoluble nanorings with hexagonal order on the substrate are developed. The RIE process can control the morphology of the nanorings, as well as the distribution of the Fe element on the substrate; thus, a continuous Fe layer and separated Fe discs on the substrate are created on substrate after washing, depending on the etching time and the shield of MCCs. The surviving Fe element can work as the catalyst to initiate the in situ growth of aligned CNTs in the following chemical vapor deposition (CVD) process, while the Fe element underneath the nanorings keep its inactivity. Eventually, CNT patterns with hierarchical structures are formed. One level originates from the surviving Fe layer; the other level is templated from the nanoring structures, which cause the blank area in the CNT bundles
Description:Date Completed 28.03.2016
Date Revised 15.12.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b03886