Multimodal Similarity-Preserving Hashing

We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 4 vom: 01. Apr., Seite 824-30
Auteur principal: Masci, Jonathan (Auteur)
Autres auteurs: Bronstein, Michael M, Bronstein, Alexander M, Schmidhuber, Jürgen
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM252590791
003 DE-627
005 20250219030416.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.225  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252590791 
035 |a (NLM)26353203 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Masci, Jonathan  |e verfasserin  |4 aut 
245 1 0 |a Multimodal Similarity-Preserving Hashing 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- and inter-modality similarity learning. Unlike existing cross-modality similarity learning approaches, our hashing functions are not limited to binarized linear projections and can assume arbitrarily complex forms. We show experimentally that our method significantly outperforms state-of-the-art hashing approaches on multimedia retrieval tasks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bronstein, Michael M  |e verfasserin  |4 aut 
700 1 |a Bronstein, Alexander M  |e verfasserin  |4 aut 
700 1 |a Schmidhuber, Jürgen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 4 vom: 01. Apr., Seite 824-30  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:36  |g year:2014  |g number:4  |g day:01  |g month:04  |g pages:824-30 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.225  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 4  |b 01  |c 04  |h 824-30