A Framework for Efficient Structured Max-Margin Learning of High-Order MRF Models

We present a very general algorithm for structured prediction learning that is able to efficiently handle discrete MRFs/CRFs (including both pairwise and higher-order models) so long as they can admit a decomposition into tractable subproblems. At its core, it relies on a dual decomposition principl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 7 vom: 14. Juli, Seite 1425-41
1. Verfasser: Komodakis, Nikos (VerfasserIn)
Weitere Verfasser: Xiang, Bo, Paragios, Nikos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article