Unsupervised Joint Salient Region Detection and Object Segmentation

This paper presents a novel unsupervised algorithm to detect salient regions and to segment out foreground objects from background. In contrast to previous unidirectional saliency-based object segmentation methods, in which only the detected saliency map is used to guide the object segmentation, our...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 10. Nov., Seite 3858-73
1. Verfasser: Zou, Wenbin (VerfasserIn)
Weitere Verfasser: Liu, Zhi, Kpalma, Kidiyo, Ronsin, Joseph, Zhao, Yong, Komodakis, Nikos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM25099836X
003 DE-627
005 20250218203025.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2456497  |2 doi 
028 5 2 |a pubmed25n0836.xml 
035 |a (DE-627)NLM25099836X 
035 |a (NLM)26186782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zou, Wenbin  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Joint Salient Region Detection and Object Segmentation 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel unsupervised algorithm to detect salient regions and to segment out foreground objects from background. In contrast to previous unidirectional saliency-based object segmentation methods, in which only the detected saliency map is used to guide the object segmentation, our algorithm mutually exploits detection/segmentation cues from each other. To achieve this goal, an initial saliency map is generated by the proposed segmentation driven low-rank matrix recovery model. Such a saliency map is exploited to initialize object segmentation model, which is formulated as energy minimization of Markov random field. Mutually, the quality of saliency map is further improved by the segmentation result, and serves as a new guidance for the object segmentation. The optimal saliency map and the final segmentation are achieved by jointly optimizing the defined objective functions. Extensive evaluations on MSRA-B and PASCAL-1500 datasets demonstrate that the proposed algorithm achieves the state-of-the-art performance for both the salient region detection and the object segmentation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Zhi  |e verfasserin  |4 aut 
700 1 |a Kpalma, Kidiyo  |e verfasserin  |4 aut 
700 1 |a Ronsin, Joseph  |e verfasserin  |4 aut 
700 1 |a Zhao, Yong  |e verfasserin  |4 aut 
700 1 |a Komodakis, Nikos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 10. Nov., Seite 3858-73  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:10  |g month:11  |g pages:3858-73 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2456497  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 10  |c 11  |h 3858-73