Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques

© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 66(2015), 11 vom: 14. Juni, Seite 3201-14
1. Verfasser: Isaure, Marie-Pierre (VerfasserIn)
Weitere Verfasser: Huguet, Stéphanie, Meyer, Claire-Lise, Castillo-Michel, Hiram, Testemale, Denis, Vantelon, Delphine, Saumitou-Laprade, Pierre, Verbruggen, Nathalie, Sarret, Géraldine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis halleri XAS. backcross cadmium hyperaccumulation μXRF Cadmium 00BH33GNGH mehr... Zinc J41CSQ7QDS
Beschreibung
Zusammenfassung:© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant
Beschreibung:Date Completed 30.03.2016
Date Revised 08.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erv131