Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands

Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day bioche...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 71(2015), 1 vom: 21., Seite 22-30
1. Verfasser: Dzakpasu, Mawuli (VerfasserIn)
Weitere Verfasser: Scholz, Miklas, McCarthy, Valerie, Jordan, Siobhán, Sani, Abdulkadir
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM245524959
003 DE-627
005 20250218020553.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2014.461  |2 doi 
028 5 2 |a pubmed25n0818.xml 
035 |a (DE-627)NLM245524959 
035 |a (NLM)25607665 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dzakpasu, Mawuli  |e verfasserin  |4 aut 
245 1 0 |a Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.10.2015 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Scholz, Miklas  |e verfasserin  |4 aut 
700 1 |a McCarthy, Valerie  |e verfasserin  |4 aut 
700 1 |a Jordan, Siobhán  |e verfasserin  |4 aut 
700 1 |a Sani, Abdulkadir  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 71(2015), 1 vom: 21., Seite 22-30  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:71  |g year:2015  |g number:1  |g day:21  |g pages:22-30 
856 4 0 |u http://dx.doi.org/10.2166/wst.2014.461  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 71  |j 2015  |e 1  |b 21  |h 22-30