Bicomponent H-bonded porous molecular networks at the liquid-solid interface : what is the influence of preorganization in solution?

Tailoring the architecture of porous two-dimensional networks formed by molecules is essential for developing functional materials with low dimensionality. Here we present bicomponent porous networks with tunable pore-sizes that were formed by self-assembly of hydrogen-bonding molecules at the liqui...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 1 vom: 13. Jan., Seite 157-63
1. Verfasser: Kudernac, Tibor (VerfasserIn)
Weitere Verfasser: Mandal, Amal Kumar, Huskens, Jurriaan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Tailoring the architecture of porous two-dimensional networks formed by molecules is essential for developing functional materials with low dimensionality. Here we present bicomponent porous networks with tunable pore-sizes that were formed by self-assembly of hydrogen-bonding molecules at the liquid/graphite interface. Scanning tunneling microscopy investigations demonstrate the formation and coexistence of three polymorphs. It is found that the occurrence of these polymorphs depends critically on the surface coverage. Further on, atomic force microscopy measurements, spectroscopic studies, and dynamic light scattering investigations show the propensity of one of the two molecular components to form aggregates beyond the monolayer. We discuss how these preorganized aggregates in solution may affect the self-assembly at the interface
Beschreibung:Date Completed 24.07.2015
Date Revised 13.01.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la5027398