Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method

To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 61(2014), 12 vom: 31. Dez., Seite 2106-20
Auteur principal: Jonsson, Ulf (Auteur)
Autres auteurs: Lindahl, Olof, Andersson, Britt
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't Silicone Elastomers
LEADER 01000caa a22002652c 4500
001 NLM244281238
003 DE-627
005 20250217205753.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2014.006471  |2 doi 
028 5 2 |a pubmed25n0814.xml 
035 |a (DE-627)NLM244281238 
035 |a (NLM)25474785 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jonsson, Ulf  |e verfasserin  |4 aut 
245 1 0 |a Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.07.2015 
500 |a Date Revised 05.12.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Silicone Elastomers  |2 NLM 
700 1 |a Lindahl, Olof  |e verfasserin  |4 aut 
700 1 |a Andersson, Britt  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 61(2014), 12 vom: 31. Dez., Seite 2106-20  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:61  |g year:2014  |g number:12  |g day:31  |g month:12  |g pages:2106-20 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2014.006471  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2014  |e 12  |b 31  |c 12  |h 2106-20