Fast global image smoothing based on weighted least squares

This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our appro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 04. Dez., Seite 5638-53
1. Verfasser: Min, Dongbo (VerfasserIn)
Weitere Verfasser: Choi, Sunghwan, Lu, Jiangbo, Ham, Bumsub, Sohn, Kwanghoon, Do, Minh N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM243316755
003 DE-627
005 20250217170859.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0811.xml 
035 |a (DE-627)NLM243316755 
035 |a (NLM)25373085 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Min, Dongbo  |e verfasserin  |4 aut 
245 1 0 |a Fast global image smoothing based on weighted least squares 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 02.02.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Choi, Sunghwan  |e verfasserin  |4 aut 
700 1 |a Lu, Jiangbo  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
700 1 |a Do, Minh N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 04. Dez., Seite 5638-53  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:04  |g month:12  |g pages:5638-53 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 04  |c 12  |h 5638-53