Genomic selection for adjacent genetic markers of yorkshire pigs using regularized regression approaches

This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Asian-Australasian journal of animal sciences. - 1998. - 27(2014), 12 vom: 31. Dez., Seite 1678-83
1. Verfasser: Park, Minsu (VerfasserIn)
Weitere Verfasser: Kim, Tae-Hun, Cho, Eun-Seok, Kim, Heebal, Oh, Hee-Seok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Asian-Australasian journal of animal sciences
Schlagworte:Journal Article Genomic Selection Litter Size Pig Regularized Regression Single Nucleotide Polymorphism
LEADER 01000caa a22002652 4500
001 NLM243176325
003 DE-627
005 20250217163812.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.5713/ajas.2014.14236  |2 doi 
028 5 2 |a pubmed25n0810.xml 
035 |a (DE-627)NLM243176325 
035 |a (NLM)25358359 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Minsu  |e verfasserin  |4 aut 
245 1 0 |a Genomic selection for adjacent genetic markers of yorkshire pigs using regularized regression approaches 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.10.2014 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been applied to animals as well as plants, especially to pigs. For efficient selection of variables with specific traits in pig breeding, it is required that any such variable selection retains some properties: i) it produces a simple model by identifying insignificant variables; ii) it improves the accuracy of the prediction of future data; and iii) it is feasible to handle high-dimensional data in which the number of variables is larger than the number of observations. In this paper, we applied several variable selection methods including least absolute shrinkage and selection operator (LASSO), fused LASSO and elastic net to data with 47K single nucleotide polymorphisms and litter size for 519 observed sows. Based on experiments, we observed that the fused LASSO outperforms other approaches 
650 4 |a Journal Article 
650 4 |a Genomic Selection 
650 4 |a Litter Size 
650 4 |a Pig 
650 4 |a Regularized Regression 
650 4 |a Single Nucleotide Polymorphism 
700 1 |a Kim, Tae-Hun  |e verfasserin  |4 aut 
700 1 |a Cho, Eun-Seok  |e verfasserin  |4 aut 
700 1 |a Kim, Heebal  |e verfasserin  |4 aut 
700 1 |a Oh, Hee-Seok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Asian-Australasian journal of animal sciences  |d 1998  |g 27(2014), 12 vom: 31. Dez., Seite 1678-83  |w (DE-627)NLM098195883  |x 1011-2367  |7 nnns 
773 1 8 |g volume:27  |g year:2014  |g number:12  |g day:31  |g month:12  |g pages:1678-83 
856 4 0 |u http://dx.doi.org/10.5713/ajas.2014.14236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2014  |e 12  |b 31  |c 12  |h 1678-83