|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM241480892 |
003 |
DE-627 |
005 |
20250217105520.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/09593330.2014.924565
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0804.xml
|
035 |
|
|
|a (DE-627)NLM241480892
|
035 |
|
|
|a (NLM)25176488
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chung, Jinwook
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.03.2015
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a four-stage Bardenpho
|
650 |
|
4 |
|a hydraulic retention time
|
650 |
|
4 |
|a membrane
|
650 |
|
4 |
|a semiconductor
|
650 |
|
4 |
|a specific denitrification rate
|
650 |
|
7 |
|a Industrial Waste
|2 NLM
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Fleege, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ong, Say Kee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Yong-Woo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1998
|g 35(2014), 21-24 vom: 30. Nov., Seite 2837-45
|w (DE-627)NLM098202545
|x 0959-3330
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2014
|g number:21-24
|g day:30
|g month:11
|g pages:2837-45
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/09593330.2014.924565
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2014
|e 21-24
|b 30
|c 11
|h 2837-45
|