Polymer brush gradients grafted from plasma-polymerized surfaces
A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 28 vom: 22. Juli, Seite 8357-65 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized. After surface-initiated atom transfer radical polymerization (SI-ATRP), poly(2-hydroxyethyl methacrylate) (PHEMA) chains were grafted from the surface and the measured thickness profiles provided direct evidence for how surface crowding provides an entropic driving force resulting in chain extension away from the surface. Film thicknesses were found to increase with the position along the gradient surface, reflecting the gradual transition from collapsed to more extended surface-tethered polymer chains as the grafting density increased. The method described is novel in that the approach provides covalent linkages from the polymer coating to the substrate and is not limited to a particular surface chemistry of the starting material |
---|---|
Beschreibung: | Date Completed 11.05.2015 Date Revised 22.07.2014 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la501380m |