Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR

This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on nuclear science. - 1988. - 60(2013), 5 vom: 01. Okt., Seite 3373-3382
Auteur principal: Ouyang, Jinsong (Auteur)
Autres auteurs: Chun, Se Young, Petibon, Yoann, Bonab, Ali A, Alpert, Nathaniel, Fakhri, Georges El
Format: Article
Langue:English
Publié: 2013
Accès à la collection:IEEE transactions on nuclear science
Sujets:Journal Article PET-MR attenuation correction
LEADER 01000caa a22002652 4500
001 NLM239538099
003 DE-627
005 20250217051929.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0798.xml 
035 |a (DE-627)NLM239538099 
035 |a (NLM)24966415 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ouyang, Jinsong  |e verfasserin  |4 aut 
245 1 0 |a Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs 
650 4 |a Journal Article 
650 4 |a PET-MR 
650 4 |a attenuation correction 
700 1 |a Chun, Se Young  |e verfasserin  |4 aut 
700 1 |a Petibon, Yoann  |e verfasserin  |4 aut 
700 1 |a Bonab, Ali A  |e verfasserin  |4 aut 
700 1 |a Alpert, Nathaniel  |e verfasserin  |4 aut 
700 1 |a Fakhri, Georges El  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on nuclear science  |d 1988  |g 60(2013), 5 vom: 01. Okt., Seite 3373-3382  |w (DE-627)NLM098149350  |x 0018-9499  |7 nnns 
773 1 8 |g volume:60  |g year:2013  |g number:5  |g day:01  |g month:10  |g pages:3373-3382 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 2013  |e 5  |b 01  |c 10  |h 3373-3382