Binding of a protein or a small polyelectrolyte onto synthetic vesicles

Catanionic vesicles were prepared by mixing nonstoichiometric amounts of sodium bis(2-ethylhexyl) sulfosuccinate and dioctyldimethylammonium bromide in water. Depending on the concentration and mole ratios between the surfactants, catanionic vesicular aggregates are formed. They have either negative...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 30(2014), 10 vom: 18. März, Seite 2810-9
1. Verfasser: Sciscione, Fabiola (VerfasserIn)
Weitere Verfasser: Pucci, Carlotta, La Mesa, Camillo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins Surface-Active Agents Unilamellar Liposomes Sodium Dodecyl Sulfate 368GB5141J
Beschreibung
Zusammenfassung:Catanionic vesicles were prepared by mixing nonstoichiometric amounts of sodium bis(2-ethylhexyl) sulfosuccinate and dioctyldimethylammonium bromide in water. Depending on the concentration and mole ratios between the surfactants, catanionic vesicular aggregates are formed. They have either negative or positive charges in excess and are endowed with significant thermodynamic and kinetic stability. Vesicle characterization was performed by dynamic light scattering and electrophoretic mobility. It was inferred that vesicle size scales in inverse proportion with its surface charge density and diverges as the latter quantity approaches zero and/or the mole ratio equals unity. Therefore, both variables are controlled by the anionic/cationic mole ratio. Small-angle X-ray scattering, in addition, indicates that vesicles are unilamellar. Selected anionic vesicular systems were reacted with poly-L-lysine hydrobromide or lysozyme. Polymer binding continues until complete neutralization of the negatively charged sites on the vesicles surface is attained, as inferred by electrophoretic mobility. Lipoplexes are formed as a result of significant electrostatic interactions between cationic polyelectrolytes and negatively charged vesicles
Beschreibung:Date Completed 14.11.2014
Date Revised 19.03.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la500199w