Toward nanoscale three-dimensional printing : nanowalls built of electrospun nanofibers

Although the extreme miniaturization of components in integrated circuits and biochemical chips has driven the development of various nanofabrication technologies, the 3D fabrication of nanoscale objects is still in its infancy. Here we propose a novel method to fabricate a free-standing nanowall by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 30(2014), 5 vom: 11. Feb., Seite 1210-4
1. Verfasser: Lee, Minhee (VerfasserIn)
Weitere Verfasser: Kim, Ho-Young
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Although the extreme miniaturization of components in integrated circuits and biochemical chips has driven the development of various nanofabrication technologies, the 3D fabrication of nanoscale objects is still in its infancy. Here we propose a novel method to fabricate a free-standing nanowall by the precise, repetitive deposition of electrospun polymer nanofibers. We show that the electrified nanojet, which tends to become unstable when traveling in air because of coulombic repulsion, can be stably focused onto the microline of a metal electrode. On the conducting line, the polymer nanojet is spontaneously stacked successively to form a wall-like structure. We rationalize the length of the wall by balancing the tension in the polymer fiber with the electrostatic interaction of the fiber with the metal ground. We also show that the length of a nanowall can be controlled by translating the substrate. This novel 3D printing scheme can be applied to the development of various 3D nanoscale objects including bioscaffolds, nanofilters, nanorobots, and nanoelectrodes
Beschreibung:Date Completed 21.10.2014
Date Revised 11.02.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la404704z