Climate-driven uncertainties in modeling terrestrial gross primary production : a site level to global-scale analysis

© 2013 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 20(2014), 5 vom: 23. Mai, Seite 1394-411
1. Verfasser: Barman, Rahul (VerfasserIn)
Weitere Verfasser: Jain, Atul K, Liang, Miaoling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Integrated Science Assessment Model (ISAM) gross primary production (GPP) land surface model uncertainty
LEADER 01000caa a22002652 4500
001 NLM233037608
003 DE-627
005 20250216080244.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.12474  |2 doi 
028 5 2 |a pubmed25n0776.xml 
035 |a (DE-627)NLM233037608 
035 |a (NLM)24273031 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barman, Rahul  |e verfasserin  |4 aut 
245 1 0 |a Climate-driven uncertainties in modeling terrestrial gross primary production  |b a site level to global-scale analysis 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.12.2014 
500 |a Date Revised 14.04.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2013 John Wiley & Sons Ltd. 
520 |a We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis-driven GPP bias was significantly positive with respect to the observed meteorology-driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m(-2)  yr(-1) across sites (ca. 15% of site level GPP). At the northern mid-/high-latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20-30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short-wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site-level reanalysis-driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate-driven uncertainties in carbon, energy, and water fluxes using a single modeling framework 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Integrated Science Assessment Model (ISAM) 
650 4 |a gross primary production (GPP) 
650 4 |a land surface model 
650 4 |a uncertainty 
700 1 |a Jain, Atul K  |e verfasserin  |4 aut 
700 1 |a Liang, Miaoling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 20(2014), 5 vom: 23. Mai, Seite 1394-411  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:5  |g day:23  |g month:05  |g pages:1394-411 
856 4 0 |u http://dx.doi.org/10.1111/gcb.12474  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 5  |b 23  |c 05  |h 1394-411