Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 29(2013), 46 vom: 19. Nov., Seite 14117-23 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Amyloid beta-Peptides Peptide Fragments amyloid beta-protein (1-42) Serum Albumin, Bovine 27432CM55Q Cobalt 3G0H8C9362 Carbon mehr... |
Zusammenfassung: | Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen |
---|---|
Beschreibung: | Date Completed 10.07.2014 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la4026427 |