Perceptually driven visibility optimization for categorical data visualization

Visualization techniques often use color to present categorical differences to a user. When selecting a color palette, the perceptual qualities of color need careful consideration. Large coherent groups visually suppress smaller groups and are often visually dominant in images. This paper introduces...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 19(2013), 10 vom: 08. Okt., Seite 1746-57
1. Verfasser: Lee, Sungkil (VerfasserIn)
Weitere Verfasser: Sips, Mike, Seidel, Hans-Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Visualization techniques often use color to present categorical differences to a user. When selecting a color palette, the perceptual qualities of color need careful consideration. Large coherent groups visually suppress smaller groups and are often visually dominant in images. This paper introduces the concept of class visibility used to quantitatively measure the utility of a color palette to present coherent categorical structure to the user. We present a color optimization algorithm based on our class visibility metric to make categorical differences clearly visible to the user. We performed two user experiments on user preference and visual search to validate our visibility measure over a range of color palettes. The results indicate that visibility is a robust measure, and our color optimization can increase the effectiveness of categorical data visualizations
Beschreibung:Date Completed 26.02.2014
Date Revised 09.08.2013
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2012.315