Modeling natural images using gated MRFs

This paper describes a Markov Random Field for real-valued image modeling that has two sets of latent variables. One set is used to gate the interactions between all pairs of pixels, while the second set determines the mean intensities of each pixel. This is a powerful model with a conditional distr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 9 vom: 20. Sept., Seite 2206-22
1. Verfasser: Ranzato, Marc'Aurelio (VerfasserIn)
Weitere Verfasser: Mnih, Volodymyr, Susskind, Joshua M, Hinton, Geoffrey E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM229294952
003 DE-627
005 20250215162722.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.29  |2 doi 
028 5 2 |a pubmed25n0764.xml 
035 |a (DE-627)NLM229294952 
035 |a (NLM)23868780 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ranzato, Marc'Aurelio  |e verfasserin  |4 aut 
245 1 0 |a Modeling natural images using gated MRFs 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2014 
500 |a Date Revised 22.07.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper describes a Markov Random Field for real-valued image modeling that has two sets of latent variables. One set is used to gate the interactions between all pairs of pixels, while the second set determines the mean intensities of each pixel. This is a powerful model with a conditional distribution over the input that is Gaussian, with both mean and covariance determined by the configuration of latent variables, which is unlike previous models that were restricted to using Gaussians with either a fixed mean or a diagonal covariance matrix. Thanks to the increased flexibility, this gated MRF can generate more realistic samples after training on an unconstrained distribution of high-resolution natural images. Furthermore, the latent variables of the model can be inferred efficiently and can be used as very effective descriptors in recognition tasks. Both generation and discrimination drastically improve as layers of binary latent variables are added to the model, yielding a hierarchical model called a Deep Belief Network 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mnih, Volodymyr  |e verfasserin  |4 aut 
700 1 |a Susskind, Joshua M  |e verfasserin  |4 aut 
700 1 |a Hinton, Geoffrey E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 9 vom: 20. Sept., Seite 2206-22  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:9  |g day:20  |g month:09  |g pages:2206-22 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.29  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 9  |b 20  |c 09  |h 2206-22