The impact of mitochondrial and thermal stress on the bioenergetics and reserve respiratory capacity of fish cell lines

Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ic...

Description complète

Détails bibliographiques
Publié dans:Journal of aquatic animal health. - 1998. - 24(2012), 4 vom: 21. Dez., Seite 244-50
Auteur principal: Beck, Benjamin H (Auteur)
Autres auteurs: Fuller, S Adam
Format: Article en ligne
Langue:English
Publié: 2012
Accès à la collection:Journal of aquatic animal health
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Description
Résumé:Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ictalurus puntatus (CCO), white bass Morone chrysops (WBE), and fathead minnow Pimephales promelas (EPC) to both mitochondrial and thermal stressors. Using extracellular flux (EF) technology, we simultaneously measured the oxygen consumption rate (OCR; a measure of mitochondrial function) and extracellular acidification rate (ECAR; a surrogate of glycolysis) in each cell type. We performed a mitochondrial function protocol whereby compounds modulating different components of mitochondrial respiration were sequentially exposed to cells. This provided us with basal and maximal OCR, OCR linked to ATP production, OCR from ion movement across the mitochondrial inner membrane, the reserve capacity, and OCR independent of the electron transport chain. After heat shock, EPC and CCO significantly decreased OCR and all three cell lines modestly increased ECAR. After heat shock, the reserve capacity, the mitochondrial energetic reserve used to cope with stress and increased bioenergetic demand, was unaffected in EPC and CCO and completely abrogated in WBE. These findings provide proof-of-concept experimental data that further highlight the utility of fish cell lines as tools for modeling bioenergetics
Description:Date Completed 14.03.2013
Date Revised 30.09.2020
published: Print
Citation Status MEDLINE
ISSN:1548-8667
DOI:10.1080/08997659.2012.720637