Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea

Copyright © 2012 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 169(2012), 18 vom: 15. Dez., Seite 1797-806
1. Verfasser: Alvarez, Raquel (VerfasserIn)
Weitere Verfasser: del Hoyo, Alicia, García-Breijo, Francisco, Reig-Armiñana, José, del Campo, Eva M, Guéra, Alfredo, Barreno, Eva, Casano, Leonardo M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antioxidants HSP70 Heat-Shock Proteins Plant Proteins Reactive Oxygen Species Chlorophyll 1406-65-1 Lead 2P299V784P mehr... Ascorbate Peroxidases EC 1.11.1.11 Catalase EC 1.11.1.6 Superoxide Dismutase EC 1.15.1.1 Glutathione Reductase EC 1.8.1.7
LEADER 01000caa a22002652 4500
001 NLM219798419
003 DE-627
005 20250214065443.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2012.07.005  |2 doi 
028 5 2 |a pubmed25n0732.xml 
035 |a (DE-627)NLM219798419 
035 |a (NLM)22841624 
035 |a (PII)S0176-1617(12)00293-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alvarez, Raquel  |e verfasserin  |4 aut 
245 1 0 |a Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.04.2013 
500 |a Date Revised 10.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2012 Elsevier GmbH. All rights reserved. 
520 |a Lichen thalli are permeable to airborne substances, including heavy metals, which are harmful to cell metabolism. Ramalina farinacea shows a moderate tolerance to Pb. This lichen comprises two Trebouxia phycobionts, provisionally referred to as TR1 and TR9, with distinct physiological responses to acute oxidative stress. Thus, there is a more severe decay in photosynthesis and photosynthetic pigments in TR1 than in TR9. Similarly, under oxidative stress, antioxidant enzymes and HSP70 protein decrease in TR1 but increase in TR9. Since Pb toxicity is associated with increased ROS formation, we hypothesized greater Pb tolerance in this phycobiont. Accordingly, the aim of the present study was to characterize the physiological differences in the responses of TR1 and TR9 to Pb exposure. Liquid cultures of isolated phycobionts were incubated for 7 days in the presence of Pb(NO₃)₂. Thereafter, extracellular and intracellular Pb accumulation, photosynthetic pigments, and photosynthesis (as modulated chlorophyll fluorescence) were analyzed along with the antioxidant enzymes glutathione reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase (APx), and catalase (CAT), and the stress-related protein HSP70. Pb uptake increased with the amount of supplied Pb in both algae. However, while significantly more metal was immobilized extracellularly by TR9, the amount of intracellular Pb accumulation was three times higher in TR1. In neither of the phycobionts were significant effects on photosynthetic pigments or photosynthetic electron transport observed. While under control conditions GR, SOD, and APx levels were significantly higher in TR1 than in TR9, only in the latter were these enzymes induced by Pb. This resulted in quantitatively similar antioxidant activities in the two algae when exposed to Pb. In conclusion, the phycobionts of R. farinacea make use of two different strategies against stress, in which the integration of distinct anatomical and physiological features affords similar levels of Pb tolerance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Antioxidants  |2 NLM 
650 7 |a HSP70 Heat-Shock Proteins  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Lead  |2 NLM 
650 7 |a 2P299V784P  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Glutathione Reductase  |2 NLM 
650 7 |a EC 1.8.1.7  |2 NLM 
700 1 |a del Hoyo, Alicia  |e verfasserin  |4 aut 
700 1 |a García-Breijo, Francisco  |e verfasserin  |4 aut 
700 1 |a Reig-Armiñana, José  |e verfasserin  |4 aut 
700 1 |a del Campo, Eva M  |e verfasserin  |4 aut 
700 1 |a Guéra, Alfredo  |e verfasserin  |4 aut 
700 1 |a Barreno, Eva  |e verfasserin  |4 aut 
700 1 |a Casano, Leonardo M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 169(2012), 18 vom: 15. Dez., Seite 1797-806  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:169  |g year:2012  |g number:18  |g day:15  |g month:12  |g pages:1797-806 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2012.07.005  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 169  |j 2012  |e 18  |b 15  |c 12  |h 1797-806