Characterization of localized surface plasmon resonance transducers produced from Au(25) nanoparticle multilayers

This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer...

Description complète

Détails bibliographiques
Publié dans:Colloids and surfaces. A, Physicochemical and engineering aspects. - 1999. - 402(2012) vom: 20. Mai, Seite 146-151
Auteur principal: Vaccarello, Paul (Auteur)
Autres auteurs: Tran, Linh, Meinen, Julia, Kwon, Chuhee, Abate, Yohannes, Shon, Young-Seok
Format: Article
Langue:English
Publié: 2012
Accès à la collection:Colloids and surfaces. A, Physicochemical and engineering aspects
Sujets:Journal Article
Description
Résumé:This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer assembly on glass slides by alternating exposures to monodisperse Au(25) nanoparticles and ionic polymer linkers. Thermal evaporation of organic matters from the nanoparticle-polymer multilayer films at 600 °C allowed the nanoparticles to coalescence and form nanostructured films. Characterization of the nanostructured films generated from Au(25) nanoparticles using atomic force microscopy (AFM) showed that the films have rounded, small, island-like morphologies (d: 30-50 nm) with a pit in the center of many islands. However, further characterizations with s-SNOM revealed that the produced nanoislands contain a single gold cluster in a pit surrounded by donut-shaped dielectric species. Formation of such a structure is thought to be resulted from the embedding of gold clusters under the reorganized polysiloxane binder coatings and glass surfaces during heat treatment of the Au(25) nanoparticle multilayer films. The nanostructured films displayed strong surface plasmon resonance bands in UV-vis spectra with a peak absorbance occurring at ~545-550 nm. The optical sensing capability of the films was examined using D-glucose-functionalized gold island films with the interaction of Concanavalin A (ConA). The result showed that the adsorption of ConA on island films causes a large change in the LSPR band intensity
Description:Date Revised 21.10.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0927-7757