Image annotation by input-output structural grouping sparsity

Automatic image annotation (AIA) is very important to image retrieval and image understanding. Two key issues in AIA are explored in detail in this paper, i.e., structured visual feature selection and the implementation of hierarchical correlated structures among multiple tags to boost the performan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 6 vom: 01. Juni, Seite 3066-79
1. Verfasser: Han, Yahong (VerfasserIn)
Weitere Verfasser: Wu, Fei, Tian, Qi, Zhuang, Yueting
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM21472557X
003 DE-627
005 20250213141619.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2183880  |2 doi 
028 5 2 |a pubmed25n0715.xml 
035 |a (DE-627)NLM21472557X 
035 |a (NLM)22262682 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Yahong  |e verfasserin  |4 aut 
245 1 0 |a Image annotation by input-output structural grouping sparsity 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.09.2012 
500 |a Date Revised 16.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automatic image annotation (AIA) is very important to image retrieval and image understanding. Two key issues in AIA are explored in detail in this paper, i.e., structured visual feature selection and the implementation of hierarchical correlated structures among multiple tags to boost the performance of image annotation. This paper simultaneously introduces an input and output structural grouping sparsity into a regularized regression model for image annotation. For input high-dimensional heterogeneous features such as color, texture, and shape, different kinds (groups) of features have different intrinsic discriminative power for the recognition of certain concepts. The proposed structured feature selection by structural grouping sparsity can be used not only to select group-of-features but also to conduct within-group selection. Hierarchical correlations among output labels are well represented by a tree structure, and therefore, the proposed tree-structured grouping sparsity can be used to boost the performance of multitag image annotation. In order to efficiently solve the proposed regression model, we relax the solving process as a framework of the bilayer regression model for multilabel boosting by the selection of heterogeneous features with structural grouping sparsity (Bi-MtBGS). The first-layer regression is to select the discriminative features for each label. The aim of the second-layer regression is to refine the feature selection model learned from the first layer, which can be taken as a multilabel boosting process. Extensive experiments on public benchmark image data sets and real-world image data sets demonstrate that the proposed approach has better performance of multitag image annotation and leads to a quite interpretable model for image understanding 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Fei  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Zhuang, Yueting  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 6 vom: 01. Juni, Seite 3066-79  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:21  |g year:2012  |g number:6  |g day:01  |g month:06  |g pages:3066-79 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2183880  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 6  |b 01  |c 06  |h 3066-79