Simplest method for creating micropatterned nanostructures on PDMS with UV light

The fabrication of micropatterned structures on PDMS is a critical step in soft lithography, microfluidics, and many other PDMS-based applications. To substitute traditional mold-casting methods, we develop a simple method to create micropatterned nanostructures on PDMS in one step. After exposing a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 22 vom: 15. Nov., Seite 13410-4
1. Verfasser: Xue, Chang-Ying (VerfasserIn)
Weitere Verfasser: Zhang, Wei, Choo, Wan Hui Stella, Yang, Kun-Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The fabrication of micropatterned structures on PDMS is a critical step in soft lithography, microfluidics, and many other PDMS-based applications. To substitute traditional mold-casting methods, we develop a simple method to create micropatterned nanostructures on PDMS in one step. After exposing a flat PDMS surface to a UV pen lamp through a photomask (such as a TEM grid), micropatterned nanostructures can be formed readily on the PDMS surface. We also demonstrate that fabricated PDMS can be used for the microcontact printing of protein immunoglobulin (IgG) on solid surfaces. This method is probably the simplest method of creating micropatterned nanostructures on PDMS reported so far because it does not need casting, surface coating, or chemical reagents. Only a UV pen lamp and a photomask are required, and this method can be performed under ambient conditions without vacuum. We expect that this method will greatly benefit researchers who use PDMS regularly in various applications such as soft lithography and microfluidics
Beschreibung:Date Completed 06.03.2012
Date Revised 08.11.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la2029824