Stochastic uncertainty models for the luminance consistency assumption

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 2 vom: 01. Feb., Seite 481-93
1. Verfasser: Corpetti, Thomas (VerfasserIn)
Weitere Verfasser: Mémin, Etienne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM210262567
003 DE-627
005 20250213015815.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2162742  |2 doi 
028 5 2 |a pubmed25n0701.xml 
035 |a (DE-627)NLM210262567 
035 |a (NLM)21791410 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Corpetti, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Stochastic uncertainty models for the luminance consistency assumption 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2012 
500 |a Date Revised 20.01.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 IEEE 
520 |a In this paper, a stochastic formulation of the brightness consistency used in many computer vision problems involving dynamic scenes (for instance, motion estimation or point tracking) is proposed. Usually, this model, which assumes that the luminance of a point is constant along its trajectory, is expressed in a differential form through the total derivative of the luminance function. This differential equation linearly links the point velocity to the spatial and temporal gradients of the luminance function. However, when dealing with images, the available information only holds at discrete time and on a discrete grid. In this paper, we formalize the image luminance as a continuous function transported by a flow known only up to some uncertainties related to such a discretization process. Relying on stochastic calculus, we define a formulation of the luminance function preservation in which these uncertainties are taken into account. From such a framework, it can be shown that the usual deterministic optical flow constraint equation corresponds to our stochastic evolution under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainties. We also show that these uncertainties can be computed at each point of the image grid from the image data and hence provide meaningful information on the reliability of the motion estimates. To demonstrate the benefit of such a stochastic formulation of the brightness consistency assumption, we have considered a local least-squares motion estimator relying on this new constraint. This new motion estimator significantly improves the quality of the results 
650 4 |a Journal Article 
700 1 |a Mémin, Etienne  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 2 vom: 01. Feb., Seite 481-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:2  |g day:01  |g month:02  |g pages:481-93 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2162742  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 2  |b 01  |c 02  |h 481-93