Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments

The data mining and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need t...

Description complète

Détails bibliographiques
Publié dans:Data mining and knowledge discovery. - 2003. - 1(2011), 4 vom: 15. Juli, Seite 339-351
Auteur principal: Cook, Diane J (Auteur)
Autres auteurs: Holder, Lawrence B
Format: Article
Langue:English
Publié: 2011
Accès à la collection:Data mining and knowledge discovery
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM209968370
003 DE-627
005 20250714190701.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n1431.xml 
035 |a (DE-627)NLM209968370 
035 |a (NLM)21760755 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cook, Diane J  |e verfasserin  |4 aut 
245 1 0 |a Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 29.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The data mining and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. One question that frequently arises, however, is how many smart home sensors are needed and where should they be placed in order to accurately recognize activities? We employ data mining techniques to look at the problem of sensor selection for activity recognition in smart homes. We analyze the results based on six data sets collected in five distinct smart home environments 
650 4 |a Journal Article 
700 1 |a Holder, Lawrence B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Data mining and knowledge discovery  |d 2003  |g 1(2011), 4 vom: 15. Juli, Seite 339-351  |w (DE-627)NLM191691062  |x 1384-5810  |7 nnas 
773 1 8 |g volume:1  |g year:2011  |g number:4  |g day:15  |g month:07  |g pages:339-351 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2162 
951 |a AR 
952 |d 1  |j 2011  |e 4  |b 15  |c 07  |h 339-351