Hierarchical line integration

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 17(2011), 8 vom: 10. Aug., Seite 1148-63
1. Verfasser: Hlawatsch, Marcel (VerfasserIn)
Weitere Verfasser: Sadlo, Filip, Weiskopf, Daniel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM209041560
003 DE-627
005 20231224005050.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2010.227  |2 doi 
028 5 2 |a pubmed24n0697.xml 
035 |a (DE-627)NLM209041560 
035 |a (NLM)21659680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hlawatsch, Marcel  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical line integration 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.02.2012 
500 |a Date Revised 24.04.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 IEEE 
520 |a This paper presents an acceleration scheme for the numerical computation of sets of trajectories in vector fields or iterated solutions in maps, possibly with simultaneous evaluation of quantities along the curves such as integrals or extrema. It addresses cases with a dense evaluation on the domain, where straightforward approaches are subject to redundant calculations. These are avoided by first calculating short solutions for the whole domain. From these, longer solutions are then constructed in a hierarchical manner until the designated length is achieved. While the computational complexity of the straightforward approach depends linearly on the length of the solutions, the computational cost with the proposed scheme grows only logarithmically with increasing length. Due to independence of subtasks and memory locality, our algorithm is suitable for parallel execution on many-core architectures like GPUs. The trade-offs of the method--lower accuracy and increased memory consumption--are analyzed, including error order as well as numerical error for discrete computation grids. The usefulness and flexibility of the scheme are demonstrated with two example applications: line integral convolution and the computation of the finite-time Lyapunov exponent. Finally, results and performance measurements of our GPU implementation are presented for both synthetic and simulated vector fields from computational fluid dynamics 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sadlo, Filip  |e verfasserin  |4 aut 
700 1 |a Weiskopf, Daniel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 17(2011), 8 vom: 10. Aug., Seite 1148-63  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:17  |g year:2011  |g number:8  |g day:10  |g month:08  |g pages:1148-63 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2010.227  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2011  |e 8  |b 10  |c 08  |h 1148-63