The Fisher-Markov selector : fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data

Selecting features for multiclass classification is a critically important task for pattern recognition and machine learning applications. Especially challenging is selecting an optimal subset of features from high-dimensional data, which typically have many more variables than observations and cont...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 6 vom: 15. Juni, Seite 1217-33
Auteur principal: Cheng, Qiang (Auteur)
Autres auteurs: Zhou, Hongbo, Cheng, Jie
Format: Article en ligne
Langue:English
Publié: 2011
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.