Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae

© The Authors (2010). Journal compilation © New Phytologist Trust (2010).

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 188(2010), 3 vom: 01. Nov., Seite 814-23
1. Verfasser: Moscatiello, Roberto (VerfasserIn)
Weitere Verfasser: Squartini, Andrea, Mariani, Paola, Navazio, Lorella
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Bacterial Proteins Flavonoids Transcription Factors Aequorin 50934-79-7 Calcium SY7Q814VUP
Beschreibung
Zusammenfassung:© The Authors (2010). Journal compilation © New Phytologist Trust (2010).
• Legume-rhizobium symbiosis requires a complex dialogue based on the exchange of diffusible signals between the partners. Compatible rhizobia express key nodulation (nod) genes in response to plant signals - flavonoids - before infection. Host plants sense counterpart rhizobial signalling molecules - Nod factors - through transient changes in intracellular free-calcium. Here we investigate the potential involvement of Ca(2+) in the symbiotic signalling pathway activated by flavonoids in Rhizobium leguminosarum bv. viciae. • By using aequorin-expressing rhizobial strains, we monitored intracellular Ca(2+) dynamics and the Ca(2+) dependence of nod gene transcriptional activation. • Flavonoid inducers triggered, in R. leguminosarum, transient increases in the concentration of intracellular Ca(2+) that were essential for the induction of nod genes. Signalling molecules not specifically related to rhizobia, such as strigolactones, were not perceived by rhizobia through Ca(2+) variations. A Rhizobium strain cured of the symbiotic plasmid responded to inducers with an unchanged Ca(2+) signature, showing that the transcriptional regulator NodD is not directly involved in this stage of flavonoid perception and plays its role downstream of the Ca(2+) signalling event. • These findings demonstrate a key role played by Ca(2+) in sensing and transducing plant-specific flavonoid signals in rhizobia and open up a new perspective in the flavonoid-NodD paradigm of nod gene regulation
Beschreibung:Date Completed 02.05.2011
Date Revised 09.01.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2010.03411.x