Porous gold nanobelts templated by metal-surfactant complex nanobelts

Unique, porous gold nanobelts consisting of self-organized nanoparticles were synthesized in a high yield by morphology-preserved transformation from metal-surfactant complex precursor nanobelts formed by a bolaform surfactant dodecane-1,12-bis(trimethylammonium bromide) (N-C(12)-NBr(2)) and HAuCl(4...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 14 vom: 20. Juli, Seite 12330-5
1. Verfasser: Li, Lianshan (VerfasserIn)
Weitere Verfasser: Wang, Zhijian, Huang, Teng, Xie, Jinglin, Qi, Limin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chlorides Gold Compounds Quaternary Ammonium Compounds Surface-Active Agents Gold 7440-57-5 gold tetrachloride, acid 8H372EGX3V
Beschreibung
Zusammenfassung:Unique, porous gold nanobelts consisting of self-organized nanoparticles were synthesized in a high yield by morphology-preserved transformation from metal-surfactant complex precursor nanobelts formed by a bolaform surfactant dodecane-1,12-bis(trimethylammonium bromide) (N-C(12)-NBr(2)) and HAuCl(4). It was revealed that the precursor nanobelts of the stoichiometric N-C(12)-N(AuCl(4))(2) complex formed through electrostatic combination of the positively charged quaternary ammonium headgroups of N-C(n)-NBr(2) and the negatively charged AuCl(4)(-) ions. They were subsequently converted into porous gold nanobelts with shrunken sizes upon reduction by NaBH(4). The morphology of the produced gold nanostructures could be adjusted by changing the mixing ratio between N-C(12)-NBr(2) and HAuCl(4) in the reaction solution. It was found that the obtained porous Au nanobelts exhibited enhanced catalytic activity toward reduction of 4-nitrophenol compared with solid gold nanobelts, probably owing to their larger surface area and more active sites
Beschreibung:Date Completed 01.12.2010
Date Revised 23.11.2015
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1015737