Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest

SUMMARY: *The flux of carbon from tree photosynthesis through roots to ectomycorrhizal (ECM) fungi and other soil organisms is assumed to vary with season and with edaphic factors such as nitrogen availability, but these effects have not been quantified directly in the field. *To address this defici...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 187(2010), 2 vom: 01. Juli, Seite 485-493
1. Verfasser: Högberg, Mona N (VerfasserIn)
Weitere Verfasser: Briones, Maria J I, Keel, Sonja G, Metcalfe, Daniel B, Campbell, Catherine, Midwood, Andrew J, Thornton, Barry, Hurry, Vaughan, Linder, Sune, Näsholm, Torgny, Högberg, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Carbon Dioxide 142M471B3J Carbon 7440-44-0 Nitrogen N762921K75
Beschreibung
Zusammenfassung:SUMMARY: *The flux of carbon from tree photosynthesis through roots to ectomycorrhizal (ECM) fungi and other soil organisms is assumed to vary with season and with edaphic factors such as nitrogen availability, but these effects have not been quantified directly in the field. *To address this deficiency, we conducted high temporal-resolution tracing of (13)C from canopy photosynthesis to different groups of soil organisms in a young boreal Pinus sylvestris forest. *There was a 500% higher below-ground allocation of plant C in the late (August) season compared with the early season (June). Labelled C was primarily found in fungal fatty acid biomarkers (and rarely in bacterial biomarkers), and in Collembola, but not in Acari and Enchytraeidae. The production of sporocarps of ECM fungi was totally dependent on allocation of recent photosynthate in the late season. There was no short-term (2 wk) effect of additions of N to the soil, but after 1 yr, there was a 60% reduction of below-ground C allocation to soil biota. *Thus, organisms in forest soils, and their roles in ecosystem functions, appear highly sensitive to plant physiological responses to two major aspects of global change: changes in seasonal weather patterns and N eutrophication
Beschreibung:Date Completed 19.10.2010
Date Revised 14.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2010.03274.x