A QCM study on the adsorption of colloidal laponite at the solid/liquid interface

The adsorption of colloidal laponite at the solid/liquid interface on various substrates and over a range of laponite concentrations (10-1000 ppm) has been investigated. Although a wide range of surfaces were studied, only on a positively charged poly(diallyldimethylammonium chloride) (PDADMAC) surf...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 26(2010), 11 vom: 01. Juni, Seite 8366-72
Auteur principal: Xu, Dan (Auteur)
Autres auteurs: Hodges, Chris, Ding, Yulong, Biggs, Simon, Brooker, Anju, York, David
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:The adsorption of colloidal laponite at the solid/liquid interface on various substrates and over a range of laponite concentrations (10-1000 ppm) has been investigated. Although a wide range of surfaces were studied, only on a positively charged poly(diallyldimethylammonium chloride) (PDADMAC) surface was any adsorption of the laponite observed. This shows that when fully wetted, laponite adsorption depends primarily on the surface charge rather than the degree of hydrophobicity of the surface. The adsorption of spherical Ludox silica nanoparticles on PDADMAC surfaces was also examined for comparison with the disklike laponite. The QCM data for both laponite and Ludox show strong adsorption on PDADMAC surfaces; however, larger frequency shifts were seen for Ludox than laponite at all concentrations tested. Within the concentration range examined in this work, the dissipation data from the QCM suggested a simple monolayer formation for Ludox but a monolayer to multilayer transition for laponite as the concentration increases
Description:Date Completed 08.09.2010
Date Revised 26.05.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la904784a