NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril)

The human gastrointestinal tract is home to hundreds of species of bacteria and the balance between beneficial and pathogenic bacteria plays a critical role in human health and disease. The human infant, however, is born with a sterile gut and the complex gastrointestinal host/bacterial ecosystem is...

Description complète

Détails bibliographiques
Publié dans:Magnetic resonance in chemistry : MRC. - 1985. - 47 Suppl 1(2009) vom: 01. Dez., Seite S36-46
Auteur principal: Romick-Rosendale, Lindsey E (Auteur)
Autres auteurs: Goodpaster, Aaron M, Hanwright, Philip J, Patel, Neil B, Wheeler, Esther T, Chona, Deepika L, Kennedy, Michael A
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:Magnetic resonance in chemistry : MRC
Sujets:Journal Article Anti-Bacterial Agents Fluoroquinolones Enrofloxacin 3DX3XEK1BN
Description
Résumé:The human gastrointestinal tract is home to hundreds of species of bacteria and the balance between beneficial and pathogenic bacteria plays a critical role in human health and disease. The human infant, however, is born with a sterile gut and the complex gastrointestinal host/bacterial ecosystem is only established after birth by rapid bacterial colonization. Composition of newborn gut flora depends on several factors including type of birth (Ceasarian or natural), manner of early feeding (breast milk or formula), and exposure to local, physical environment. Imbalance in normal, healthy gut flora contributes to several adult human diseases including inflammatory bowel (ulcerative colitis and Crohn's disease) and Clostridium difficile associated disease, and early childhood diseases such as necrotizing enterocolitis. As a first step towards characterization of the role of gut bacteria in human health and disease, we conducted an 850 MHz (1)H nuclear magnetic resonance spectroscopy study to monitor changes in metabolic profiles of urine and fecal extracts of 15 mice following gut sterilization by the broad-spectrum antibiotic enrofloxacin (also known as Baytril). Ten metabolites changed in urine following enrofloxacin treatment including decreased acetate due to loss of microbial catabolism of sugars and polysaccharides, decreased trimethylamine-N-oxide due to loss of microbial catabolism of choline, and increased creatine and creatinine due to loss of microbial enzyme degradation. Eight metabolites changed in fecal extracts of mice treated with enrofloxacin including depletion of amino acids produced by microbial proteases, reduction in metabolites generated by lactate-utilizing bacteria, and increased urea caused by loss of microbial ureases
Description:Date Completed 21.04.2010
Date Revised 26.12.2020
published: Print
Citation Status MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.2511