Contact line pinning on microstructured surfaces for liquids in the Wenzel state

The wettability of surfaces microstructured with square pillars was studied, where the static advancing contact angle on the planar surface was 72 degrees. We observed elevated advancing angles (up to 140 degrees) on these structures for droplets in the Wenzel state. No air was trapped in the struct...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 26(2010), 2 vom: 19. Jan., Seite 860-5
1. Verfasser: Forsberg, Pontus S H (VerfasserIn)
Weitere Verfasser: Priest, Craig, Brinkmann, Martin, Sedev, Rossen, Ralston, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The wettability of surfaces microstructured with square pillars was studied, where the static advancing contact angle on the planar surface was 72 degrees. We observed elevated advancing angles (up to 140 degrees) on these structures for droplets in the Wenzel state. No air was trapped in the structured surfaces beneath the liquid, ruling out the well-known Lotus leaf effect. Instead, we show that the apparent hydrophobicity is related to contact line pinning at the pillar edges, giving a strong dependence of wetting hysteresis on the fraction of the contact line pinned on pillars. Simulating the contact line pinning on these surfaces showed similar behavior to our measurements, revealing both strong pinning at the edges of the pillars as well as mechanistic details
Beschreibung:Date Completed 11.03.2010
Date Revised 13.01.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la902296d