Electrical conductivity of graphene films with a poly(allylamine hydrochloride) supporting layer

The electrical conductivity of graphene oxide (GO) and reduced graphene oxide (RGO) films with poly(allylamine hydrochloride) (PAH) supporting layers is investigated. Graphene-PAH hybrid films were produced in a two-step procedure that consisted of vacuum filtration for GO (or RGO) dispersion to fab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 25(2009), 18 vom: 15. Sept., Seite 11008-13
1. Verfasser: Kong, Byung-Seon (VerfasserIn)
Weitere Verfasser: Yoo, Hae-Wook, Jung, Hee-Tae
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The electrical conductivity of graphene oxide (GO) and reduced graphene oxide (RGO) films with poly(allylamine hydrochloride) (PAH) supporting layers is investigated. Graphene-PAH hybrid films were produced in a two-step procedure that consisted of vacuum filtration for GO (or RGO) dispersion to fabricate the graphene thin films on quartz substrates, followed by the deposition of PAH onto the graphene films via solution casting. Highly selective deposition of the PAH layer on the graphene sheets was confirmed through the detection of the fluorescence signals of hybridized Cy3-DNA onto the PAH-coated graphene surfaces. In this case, electrostatic interaction plays an important role in the selective deposition process. Interestingly, it was found that the electrical conductivity of RGO films was significantly enhanced by 120% after PAH treatment, whereas that of the GO films was reduced by 98% of its initial conductivity. This finding was interpreted in terms of the molecular structure and oxygen functionalities of GO and RGO films combined with the ionic conduction characteristics of hydrated PAH on the RGO film
Beschreibung:Date Completed 04.12.2009
Date Revised 08.09.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la901310g