On scene segmentation and histograms-based curve evolution

We consider curve evolution based on comparing distributions of features, and its applications for scene segmentation. In the first part, we promote using cross-bin metrics such as the Earth Mover's Distance (EMD), instead of standard bin-wise metrics as the Bhattacharyya or Kullback-Leibler me...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 9 vom: 15. Sept., Seite 1708-14
1. Verfasser: Adam, Amit (VerfasserIn)
Weitere Verfasser: Kimmel, Ron, Rivlin, Ehud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM189738170
003 DE-627
005 20250210134948.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.21  |2 doi 
028 5 2 |a pubmed25n0633.xml 
035 |a (DE-627)NLM189738170 
035 |a (NLM)19574629 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Adam, Amit  |e verfasserin  |4 aut 
245 1 0 |a On scene segmentation and histograms-based curve evolution 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2009 
500 |a Date Revised 03.07.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We consider curve evolution based on comparing distributions of features, and its applications for scene segmentation. In the first part, we promote using cross-bin metrics such as the Earth Mover's Distance (EMD), instead of standard bin-wise metrics as the Bhattacharyya or Kullback-Leibler metrics. To derive flow equations for minimizing functionals involving the EMD, we employ a tractable expression for calculating EMD between one-dimensional distributions. We then apply the derived flows to various examples of single image segmentation, and to scene analysis using video data. In the latter, we consider the problem of segmenting a scene to spatial regions in which different activities occur. We use a nonparametric local representation of the regions by considering multiple one-dimensional histograms of normalized spatiotemporal derivatives. We then obtain semisupervised segmentation of regions using the flows derived in the first part of the paper. Our results are demonstrated on challenging surveillance scenes, and compare favorably with state-of-the-art results using parametric representations by dynamic systems or mixtures of them 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kimmel, Ron  |e verfasserin  |4 aut 
700 1 |a Rivlin, Ehud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 9 vom: 15. Sept., Seite 1708-14  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:31  |g year:2009  |g number:9  |g day:15  |g month:09  |g pages:1708-14 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.21  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 9  |b 15  |c 09  |h 1708-14