A stochastic filtering technique for fluid flow velocity fields tracking

In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 7 vom: 14. Juli, Seite 1278-93
1. Verfasser: Cuzol, Anne (VerfasserIn)
Weitere Verfasser: Mémin, Etienne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM188542310
003 DE-627
005 20250210102041.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.152  |2 doi 
028 5 2 |a pubmed25n0629.xml 
035 |a (DE-627)NLM188542310 
035 |a (NLM)19443925 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cuzol, Anne  |e verfasserin  |4 aut 
245 1 2 |a A stochastic filtering technique for fluid flow velocity fields tracking 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2009 
500 |a Date Revised 15.05.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mémin, Etienne  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 31(2009), 7 vom: 14. Juli, Seite 1278-93  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:7  |g day:14  |g month:07  |g pages:1278-93 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 7  |b 14  |c 07  |h 1278-93