GPCR-CA : A cellular automaton image approach for predicting G-protein-coupled receptor functional classes

(c) 2008 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 30(2009), 9 vom: 15. Juli, Seite 1414-23
Auteur principal: Xiao, Xuan (Auteur)
Autres auteurs: Wang, Pu, Chou, Kuo-Chen
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't Receptors, G-Protein-Coupled
LEADER 01000caa a22002652c 4500
001 NLM184761719
003 DE-627
005 20250209232921.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21163  |2 doi 
028 5 2 |a pubmed25n0616.xml 
035 |a (DE-627)NLM184761719 
035 |a (NLM)19037861 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Xuan  |e verfasserin  |4 aut 
245 1 0 |a GPCR-CA  |b A cellular automaton image approach for predicting G-protein-coupled receptor functional classes 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2009 
500 |a Date Revised 30.04.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2008 Wiley Periodicals, Inc. 
520 |a Given an uncharacterized protein sequence, how can we identify whether it is a G-protein-coupled receptor (GPCR) or not? If it is, which functional family class does it belong to? It is important to address these questions because GPCRs are among the most frequent targets of therapeutic drugs and the information thus obtained is very useful for "comparative and evolutionary pharmacology," a technique often used for drug development. Here, we present a web-server predictor called "GPCR-CA," where "CA" stands for "Cellular Automaton" (Wolfram, S. Nature 1984, 311, 419), meaning that the CA images have been utilized to reveal the pattern features hidden in piles of long and complicated protein sequences. Meanwhile, the gray-level co-occurrence matrix factors extracted from the CA images are used to represent the samples of proteins through their pseudo amino acid composition (Chou, K.C. Proteins 2001, 43, 246). GPCR-CA is a two-layer predictor: the first layer prediction engine is for identifying a query protein as GPCR on non-GPCR; if it is a GPCR protein, the process will be automatically continued with the second-layer prediction engine to further identify its type among the following six functional classes: (a) rhodopsin-like, (b) secretin-like, (c) metabotrophic/glutamate/pheromone; (d) fungal pheromone, (e) cAMP receptor, and (f) frizzled/smoothened family. The overall success rates by the predictor for the first and second layers are over 91% and 83%, respectively, that were obtained through rigorous jackknife cross-validation tests on a new-constructed stringent benchmark dataset in which none of proteins has >or=40% pairwise sequence identity to any other in a same subset. GPCR-CA is freely accessible at http://218.65.61.89:8080/bioinfo/GPCR-CA, by which one can get the desired two-layer results for a query protein sequence within about 20 seconds 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Receptors, G-Protein-Coupled  |2 NLM 
700 1 |a Wang, Pu  |e verfasserin  |4 aut 
700 1 |a Chou, Kuo-Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 9 vom: 15. Juli, Seite 1414-23  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:30  |g year:2009  |g number:9  |g day:15  |g month:07  |g pages:1414-23 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21163  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 9  |b 15  |c 07  |h 1414-23