A novel method for protein-ligand binding affinity prediction and the related descriptors exploration

(c) 2008 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 30(2009), 6 vom: 30. Apr., Seite 900-9
Auteur principal: Li, Shuyan (Auteur)
Autres auteurs: Xi, Lili, Wang, Chengqi, Li, Jiazhong, Lei, Beilei, Liu, Huanxiang, Yao, Xiaojun
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't Validation Study Ligands Proteins
LEADER 01000caa a22002652c 4500
001 NLM182364666
003 DE-627
005 20250209180603.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21078  |2 doi 
028 5 2 |a pubmed25n0608.xml 
035 |a (DE-627)NLM182364666 
035 |a (NLM)18785151 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Shuyan  |e verfasserin  |4 aut 
245 1 2 |a A novel method for protein-ligand binding affinity prediction and the related descriptors exploration 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2009 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2008 Wiley Periodicals, Inc. 
520 |a In this study, a novel method was developed to predict the binding affinity of protein-ligand based on a comprehensive set of structurally diverse protein-ligand complexes (PLCs). The 1300 PLCs with binding affinity (493 complexes with K(d) and 807 complexes with K(i)) from the refined dataset of PDBbind Database (release 2007) were studied in the predictive model development. In this method, each complex was described using calculated descriptors from three blocks: protein sequence, ligand structure, and binding pocket. Thereafter, the PLCs data were rationally split into representative training and test sets by full consideration of the validation of the models. The molecular descriptors relevant to the binding affinity were selected using the ReliefF method combined with least squares support vector machines (LS-SVMs) modeling method based on the training data set. Two final optimized LS-SVMs models were developed using the selected descriptors to predict the binding affinities of K(d) and K(i). The correlation coefficients (R) of training set and test set for K(d) model were 0.890 and 0.833. The corresponding correlation coefficients for the K(i) model were 0.922 and 0.742, respectively. The prediction method proposed in this work can give better generalization ability than other recently published methods and can be used as an alternative fast filter in the virtual screening of large chemical database 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Validation Study 
650 7 |a Ligands  |2 NLM 
650 7 |a Proteins  |2 NLM 
700 1 |a Xi, Lili  |e verfasserin  |4 aut 
700 1 |a Wang, Chengqi  |e verfasserin  |4 aut 
700 1 |a Li, Jiazhong  |e verfasserin  |4 aut 
700 1 |a Lei, Beilei  |e verfasserin  |4 aut 
700 1 |a Liu, Huanxiang  |e verfasserin  |4 aut 
700 1 |a Yao, Xiaojun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 6 vom: 30. Apr., Seite 900-9  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:30  |g year:2009  |g number:6  |g day:30  |g month:04  |g pages:900-9 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21078  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 6  |b 30  |c 04  |h 900-9